360 research outputs found

    The evolution of the Port of Hamburg from a hydrographic perspective

    Get PDF

    Generating Test Cases from Real Field Data to Ensure C2X Interoperability

    Get PDF
    Der Beitrag beschreibt ein Vorgehen um V2X Nachrichten für die automatisierte Erstellung von funktionalen Testfällen zu nutzen

    Contrasting effects of reindeer grazing on CO2, CH4, and N2O fluxes originating from the northern boreal forest floor

    Get PDF
    SPECIAL ISSUE ARTICLE Editor Dr. Chris J. BarrowReindeer (Rangifer tarandus L.) is considered to be an important mammalian herbivore, strongly influencing Arctic lichen-dominated ecosystems. There is no wide knowledge about the effect of reindeer on greenhouse gas (GHG) fluxes in northern boreal forests. Ground vegetation plays an important role in absorbing nitrogen (N) and carbon dioxide (CO2) from the atmosphere. Lately, it has also been found to be a significant source of nitrous oxide (N2O) and a small source of methane (CH4). We investigated the influence of reindeer grazing on field layer GHG (CO2, CH4, and N2O) fluxes, ground vegetation coverage and biomass, and soil physical properties (temperature and moisture) in a northern boreal forest. At our study site, the reindeer-induced replacement of lichen by mosses had contrasting effects on the GHG fluxes originating from the field layer. Field layer CO2 efflux was significantly higher in grazed areas. The field layer was a CH4 sink in all areas, but grazed areas absorbed more CH4 compared to non-grazed areas. Although total N2O fluxes remained around 0 in grazed areas, a small N2O sink occurred in non-grazed areas with lower moss biomass. Our results indicated that grazing by reindeer in northern boreal forests affects GHG fluxes from the forest field layer both positively and negatively, and these emissions largely depend on grazing-induced changes in vegetation composition.Peer reviewe

    Identification of Lane-Change Maneuvers in Real-World Drivings with Hidden Markov Model and Dynamic Time Warping

    Get PDF
    For the introduction of new automated driving functions, the systems need to be verified extensively. A scenario-driven approach has become an accepted method for this task. But to verify the functionality of an automated vehicle in the simulation in a certain scenario such as a lane change, relevant characteristics of scenarios need to be identified. This, however, requires to extract these scenarios from real-world drivings accurately. For that purpose, this work proposes a novel framework based on a set of unsupervised learning methods to identify lane-changes on motorways. To represent various types of lane changes, the maneuver is split up into primitive driving actions with an Hidden Markov Model and Divisive Hierarchical Clustering. Based on this, lane change maneuvers are identified using Dynamic-Time-Warping. The presented framework is evaluated with a real-world test drive and compared to other baseline methods. With a f1 score of 98.01\% in lane-change identification, the presented approach shows promising results

    Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region

    Get PDF
    Climate warming in arctic/subarctic ecosystems will result in increased frequency of forest fires, elevated soil temperatures and thawing of permafrost, which have implications for soil organic matter (SOM) decomposition rates, the CO2 emissions and globally significant soil C stocks in this region. It is still unclear how decomposability and temperature sensitivity of SOM varies in different depths and different stages of succession following forest fire in permafrost regions and studies on long term effects of forest fires in these areas are lacking. To study this question, we took soil samples from 5, 10 and 30 cm depths from forest stands in Northwest Canada, underlain by permafrost, that were burnt by wildfire 3, 25 and over 100 years ago. We measured heterotrophic soil respiration at 1, 7, 13 and 19 °C. Fire had a significant effect on the active layer depth, and it increased the temperature sensitivity (Q10) of respiration in the surface (5 cm) and in the deepest soil layer (30 cm) in the 3-year-old area compared to the 25- and more than 100-year-old areas. Also the metabolic quotient (qCO2) of soil microbes was increased after fire. Though fires may facilitate the SOM decomposition by increasing active layer depth, they also decreased SOM quality, which may limit the rate of decomposition. After fire all of these changes reverted back to original levels with forest succession.Peer reviewe

    Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost

    Get PDF
    Rising air temperatures and changes in precipitation patterns in boreal ecosystems are changing the fire occurrence regimes (intervals, severity, intensity, etc.). The main impacts of fires are reported to be changes in soil physical and chemical characteristics, vegetation stress, degradation of permafrost, and increased depth of the active layer. Changes in these characteristics influence the dynamics of carbon dioxide (CO2) and methane (CH4) fluxes. We have studied the changes in CO2 and CH4 fluxes from the soil in boreal forest areas in central Siberia underlain by continuous permafrost and the possible impacts of the aforementioned environmental factors on the emissions of these greenhouse gases. We have used a fire chronosequence of areas, with the last fire occurring 1, 23, 56, and more than 100 years ago. The soils in our study acted as a source of CO2. Emissions of CO2 were lowest at the most recently burned area and increased with forest age throughout the fire chronosequence. The CO2 flux was influenced by the pH of the top 5cm of the soil, the biomass of the birch (Betula) and alder (Duschekia) trees, and by the biomass of vascular plants in the ground vegetation. Soils were found to be a CH4 sink in all our study areas. The uptake of CH4 was highest in the most recently burned area (forest fire one year ago) and the lowest in the area burned 56 years ago, but the difference between fire chronosequence areas was not significant. According to the linear mixed effect model, none of the tested factors explained the CH4 flux. The results confirm that the impact of a forest fire on CO2 flux is long-lasting in Siberian boreal forests, continuing for more than 50 years, but the impact of forest fire on CH4 flux is minimal.Peer reviewe

    Recovery of carbon stocks after wildfires in boreal forests : a synthesis

    Get PDF
    Book of abstracts Cool forests at risk? The Critical Role of Boreal and Mountain Ecosystems for People, Bioeconomy, and ClimatePeer reviewe
    corecore